[SWIFT] problème avec conversion base64

Bonjour tout le monde,


 


De retour avec un qui me fait tourner en rond, j'vous explique..


 


J'ai une appli iOs et une appli Android..


Quand j'envoie une image depuis iOs, je l'a convertis en base64 pour la stocké dans ma bdd.


Je récupère l'image côté iOs, pas de soucis.


Quand je fais la même chose avec mon Android, l'image n'est pas lisible sur iOs.


Pourtant en mettant la base64 dans un convertisseur en ligne, pas de soucis, elle est bien lisible.


 


Voici l'image en base64 :



iVBORw0KGgoAAAANSUhEUgAAAiAAAAC4CAYAAADaI1cbAAAABHNCSVQICAgIfAhkiAAAIABJREFU
eJzsnXl8VOXVx3/n3DtJSALIkgBq3aqtilZpEiwKmmQSKG6ttVC1y9ta61Krb+tbqwLaUSG4tHZ9
VaxWbe2rFde6ICGbKCokaLWiRW3rViUJezJAZu495/0DsYokmSTPnTsTnu/n035a5s45Z36ZuXPm
ec5zDsHyMcpj6g4FcrbmbYiwM8JbNwyJlWfDA5GGHZvFYrFYLIMFCjuAdFGyQCPDWjs/wy4OUdB+
pLQ/oPt6QBFUR5PSKGUZ6oB51xZkGwEblHitAuvIxxoQ3iSmN5X0X8L8StNPhvzbJioWi8VisfTO
oExAYjHlJ7nzEHL5aKgeDZUJPuEQB5wTqGPBBgAvgfG8kj7NSsvqZxe2BurTYrFYLJYsZNAkINXX
xvf0fZ0G0HT4WgXGiLBjAgDfx2uuiyeU8FhuQcGTiy6krrBjslgsFoslbLI6Aam6Zus+6vszPGCm
A0wMO57eEEGcHfwFQneP8vIXL4xRIuyYLBaLxWIJg6xLQE6KaX5nJP5VFZzFjClhx9NvBBvIwR8B
XVA/a+grYYdjsVgsFks6yZoEpHz+pgNZ3AtF9FvMGB52PEYRPKkO3XBcIv/RWIwk7HAsFoslGyi9
51QjRf8tp92fNd+Fgwk37AB6o3Lu5qNBdDE8/RJYqbszKlkN4zhSPa6R469UzOu8VpMF/9cUIy/s
sCwWi8ViCYqM/TqP1myZVD63sxbEywD6MpgHfYbqODiUgDuZ43+rmNtxKlQH/Wu2WCwWy+5JxiUg
VVd3HBKd1/moqjzDhOqw4wkFBwcT0X2VNfFno/PjZWGHY7FYLBaLaTJmCyZas3mUqHOlJ/65DHLC
jidDOEo9f3nF3M7fqyeXNsWGrQ07IIvFYrFYTBD+CogqVczr/Jbv82qCns/MNvn4KMxEhO+yw69U
zu2YEXY4FovFYrGYINQEpGr+tgMq5sdrt9c9YFSYsWQ8jCIQ3Vs5L74wWrPZamWxWCyWrCacBESV
KubFzxTxXyRFVSgxZC36VV/xYtXVHeVhR2KxWCwWS39JewISrdk8qrKm8wGC3gZoYbr9DwYYvJdA
G6I18StiMQ1/G81isVgslj6S1i+v8rnxUlWsBOjL6fQ7KGEmVb1yqRt/uDy2YY+ww7FYLBaLpS+k
LQGpnBc/S8lfBvC+6fK5W0A4kSOR5yqv3vjpsEOxWCwWiyVVAk9AZtyrTuW8zhsA/Z0Dzgna327K
ZwXu8qq5myeHHYjFYrFYLKkQaAIy9XotWPd65wMAfhSkHwvAjFGeoq6iJn5y2LFYLBaLxdIbgSUg
k+dvHOEnOusAyoovRBHEobIGwOtQ/wUFPQ3oMwRp8X28ApU1EEmGHWdPMHOu+v4DlTWd3ww7FovF
YrFYeiKQTqjReZ1jPA+1yvhcEPb7jUhSQC1E9Aox/g6h1cT+6o2jhv5r5TnUe3KhSuVXdoyC6+xH
JAdAMZ4InxNoGYP3SsMr6BVl6mJf3wk7DovFYrFYesJ4AlJ+XedYTaLJYXzWtO2+4kME4BZH0QAH
jW7O0GW1F1O83waJtAlYi+3/afnw31Wpct62fcD+sfDxRQGmhdFYzYduiQhOqLt8aFO6fVssFovF
0heMJiBTf9pR3LUN9XBCTj7UfwFw/pCbpP+rvbKwLXB/RNoAvAXgjwD+OONeddat7jwOjNN90EwH
GBZ0CDb5sFgsFks2YSwBmTx/44guj5Y4jENN2ewLItjEwK2suLPuiuF/CyOGHSycST6ABgANU6/X
H3rJ+EyIfwHImRCEP5t8WCwWiyXbMJKAlMc0jyX+EEKo+RDBOsehG9xI1//WXTpyU7r998YHWz63
Q/WOipp4pSpmM6HClH2bfFgsFoslGxlwAhKLKS914ncCONZAPKkjaCfCNTl5BQsGVNeRLoi0EagH
UF95dUclsV6r4NKBmLTJh8VisViylQEfw13qdl4JxkwTwaSEiAr05oTrfbZ+TuENWZF87ETD5UMb
piSHHgXCmRC098eGTT4sFovFks3QQJ5cMbfjVCK6z1QwvUHw/yoUObdxVv7ydPkMmmjN5lEq+AWI
U+7dYZMPi8ViAUrvOVVN2Gk57f4BfRda+ke/V0AqruoYr0p3mgymO3yIENFsPzmsbDAlHwBQP2vY
uoY5w74F5a+IYF1v19vkw2KxWCyDgX4lIJNu0CHk0p+ZUWA6oE+gsoaJKutnFdQ0xcgL3F9INMzJ
fzCSQ5/b3oF119jkw2KxWCyDhX4lIEO2bvk5FONNB/MJCA1EfGTjrKFPBu4rA1hyScF7m0fnVwL4
1c6P2eTDYrFYLIOJPicglXPjJwF6XhDBfBy6adSBBVPrZxe2Bu8rc1h5DiUbZhf+UEHniIgP2OTD
YrFYLIOPPiUgk+dvHEHkLwgqmA9RndswK//8Dxp67ZY0zi64hRznZAjabfJhsVgslsFGnxKQHHFv
UPC4oIIBACh+1DBn6OUgMlLdnM00zip4vMAv2M8mHxaLxWIZbKTciCw6r6NCgW8HGAtAdHbD7ILf
Beojy3gkRlvCjsFisVgsFtOktAJSHlNXiX4TaCRElzfMssmHxWKxWCy7AyklIOR2fj/IUy8Cvbnh
svx5Qdm3WCwWi8WSWfSagJTHNuxBSrGgAiDow0UHFf7A1nxYLBaLxbL70GsCwhH3x2CMCMK57+M1
P7n1G7vzaReLxWKxWHZHekxAovM6x4jQD4Nw7EMSkQid1hQr7gzCvsVisVgslsylxwREFBcF1W6d
lS6uu6zghSBsWywWi8ViyWy6TUCqrlk/XAjnBuGUgMcaZxcGe6rGYrFYLBZLxtJtAqKSc44DDDPt
0IducZTPs0WnFovFYrHsvuwyASmPqasqFwTjkObWzsl/JwjbFovFYrFYsoNdJiCUs+V4gPc27k3p
jbyhBTcYt2uxWCwWiyWr2PUWjPiBTLtVxn8vupC6grBtsVgsFosle/hEAlJ+7Za9STHNuCehZY2z
Ch43btdisVgsFkvW8YkExPHka2Am047IwTWmbVosFovFYslOPpGAeNAzjHshrJqSyLerHxaLxWKx
WAAA7kf/T+XVGz8N0OcD8HNtLEYSgF2LxWKxWHZrFCDMGB8BACxclSQgK9pcfCwBIXZPNB21CFo7
igvuMWzWYvmQ9mOOGapDth1BSuOV6GCo7Auf9wbJaAGPZCBPGDkAwIKEMLayYD0U68B4R0FvMclq
YbxMya0vFjetsuMB+oA+jaHeVvcIJRpPioNBui9AexNktA8eCSAPsl1/MBIQbHVY1it4HUjfAegt
Vawm0ZfdiPciVcDqnyKxmPKT3HkIOzRBFIcT0YGA7OsLihzmkRA/F8wRHyKOcBws60XoPXLon6T0
KoDnI0lv+eLY8PVhvxZL9+iMGU7rhn8eSkJHMvHhqvppZewLlTEkPLKdkY8df8FoGdoEWwRYx4o1
cPEmoK8B9JKKrCxuWPnPTElQPlbrUT63s5YJ1YZ9/KphdmEg82Qsuyfrph81zOvSKEOrFZgiikOZ
ex+smAoiECasAuEpBS1xc6hh1KLlm03YHizo4xjm5+RUAlqt8KcInPGcwmDLVBBAGP4qgvMUQEuc
RKKBjofV/yNUXbN1H9/zTiTQdBAmA9hjoDYJ/l9F+XHH4fvqLs3/a7Y0iiy951Qjcbacdr/xuseB
0l5R+lkwn6DQqQI5msFDzViWNSqoZ8d5nCP0aJj3tw9Fn3q9FnQlOtY74ByTDkSprGlOQYtJm5bd
j7by8YXg/K8qYaYCVQxE0uFXBQllXULE9ypvu39s7UvxdPjNNLQRhb4fOdVXmgnSKgaM3ie6Q4AE
QEsc1XsdSd5P07Bb6l91zfrhIpEzoPgGQEcH6oywCqoLutxtdyy7pKijt8sr53XMBWi2CdcNswv7
lAgMtgSkfVrJOPX421CcDsLhgTsUdIHxqBL9rnjyiiUUQ1pLJT4UvWJeZ5SAOpPGfR+vPXl5wcHZ
kk1bMo/WiolHEMsFEDoNAQ1GTB3qVPXvVsZvxtat/Fu4saSHrrqczznwL/DBpzPC1V8EnY4jd/vi
/Ca3OrFb6F8+f9OBEP4fCH0zqMGgPbBRVX/tuMkb6i4duam7i2wCMnBaoxMnEXCRiH8KMzthxKDA
alb62ehR8T/QwlWJdPj8cNmUoFNMG3dd+pNNPiz9ob267Lj2ytI6Yv0rQN8NP/kAAC0k4u+x8ktt
0bLatuhE45+ZTCFZ6x6XqIssYeiLCj4r7OQDAJhRqMrfY9KXErWR2mSdO2j1r75600GVNZ3/p0Kr
GXRuCMkHAOxBRFeIn/NGZU38e7GYGtlms/yHtqqSyW0VZY0EfQbQr4aVfAAAAZ9V0t+1r89b3R4t
+7ruVKIRBP95QxEZ/zAL4THTNi2Dm7aq0gntlaV1KmhSomjY8fRANaBL26Jlta0VE48IOxhTJGoj
RybqIkvA1ERAVdjxdAcxqgFamqiN1CYaIoNG/8nzN44or4n/Jgl6FYrTHXAmfOmPhuotSyPxxqlX
b90/7GAGA61VZQe0RUsegPJTYJSHHc/H4f0UuKu9vHTZmqqSQLeBGNheSQ0fZSYN+8Dm0Z/O/6tJ
m5bBy6Zpk0a2VpbcIkorMzzx2JlqZX2hvar0po2TJ48IO5j+ok9hhFfnLFDg+UxOPHaGGNXq4QVv
SeQmfQpZqz9UKTq38+s54r7Gqj8I85dwDxzbxf5fK+bGvxR2INmKlpe7bZUTLyEfrwB8Stjx9IhD
k6B4vq2qbI7OmBHI+5EB4Oncrv3AMFRhux1HsXThTPJN2rQMTlqrSk/tSnp/J+LvcRqW/UzDAKnS
uYncra+uqSrNupuzV59zSrIr8ncFn82chfozSAnnJrdGXvWW5GSd/lNqOoqiNZ0PKuEuAKPDjqcn
HGAYkT5UMa/z4rBjyTZaK0s+3ebEl4H0GjByw44nFRjsQnF12/o3G9urJ+xp3j4A8cX4EiYRmkzb
tAwu2srHF7ZFS+8kpftAKAo7noHDY1jpobaqst+vmfq50GsmekMXo8Crc25X1QcIKA47noFCjDFK
+pC3xPm9Lg6/ZiUVovM6KnJUX1RQViVOBFxXOa9jLlSzLmENg9aq0lOJnL8SMDHsWPoDAVNU+PnW
6MRJJu0yABCr+X0epqXGbVoGDeuiRx0qnN8M0LfCjsU4iu84fmR5e0XpZ8MOpTu6Fucc7JG7QsHf
DjsW0yjxdzzi5dsacjNWf6hS5dzOH/qiSxQ8Luxw+gfNrqiJXwpQYdiRZCoKUFtl2dWkdB+gWa4T
jyHRxrZo6VeNWQQAEf8AUwZ3kN+Vv8q0TcvgoLVq4rSkeM8y4eCwYwkKBY/3mZ5bU12WcfUsyTq3
Go4+B6ZDw44lMNgZT548l6x1M07/8pi6FTWdN4Hwiwyt9UgZAmoA/HfYcWQiOmN8ztpo2R9AmBN2
LMZg5Aro3rboxO+aMQeAiA1XNsu7j8Roi1mblsFAa9XEb6nvP8bMw8KOJWgY2AOeLG6Pln097Fh2
4NXlfENAixgYHnYsQcOMPYRpsVeXkzH6T/+15jqRzvsIdE7YsViC4/XpB+a2bchfqMA3wo7FNNvr
9PTW9qqy7xmwBSh8swkI8WtG7VkGBW3R0vNJ9c5s/9XXF5jZUeCu1qqy88KOJVEfOVehf2Rg99Ef
cBR6V2JJJHT9J92gQ7Zt7ngo2+o9LH1DS0oiw5Ij7iXFyWHHEiS+YkF7ZenpA7HBUCUSGmsqKAAQ
VZuAWD7G9i9g+m3YcYQFKW408YuhvyTqImeT4qaw/IcNEW5MLImEpn/JAo0M2RK/l4i/GFYMluDR
GHjtHvz7wZ58ANtXQnyiO9dWTqzsrw13+pXrh3ZFco3O1XBAb5i0FwaV8zp36w6ubkLH1F45tM2E
rfZo6WmquNGErWzGVyxoi5ZuKK5vuS+dfr36nBm+rzdTJrS0ChFVLPDqcja4VYm06g9VGjY/fjsI
J6bVryXttD1VFqNBuO3SHQxEPNL726qPmli8ZPnrfX5+MrfA+LlzJdjRzlmOuDBSoNhWWXasCN1p
wla2wwBB6K7W6tJj0uUzucSd7KvelY39PUzDDPKhdyVr3bTpDwAV8zpjpMiYOhRLMLRVlc0k4PKw
40g3DOwBXx7oT+sB9uEb7x5I0F4nKFoyG3H4oIHaWF9Vsg8I9xOnZ3JqVsDIJdH715UftXfQrnTx
kE/5TA+ka3JtNsBAroLu18YhgesPABVzO04loivS4csSHu3RiZ+B0m1hxxEahMPYj/R5i90l38+F
6bVZok6zBi1pR2XfAT19xvic9na+D044nR0V8i6BVynwFpG2Q3grAIBliCoVEel+ojqewXulPzoe
4zuyUEtKjqWVK5NBeNAWRLwN3kJHQ2rwJvquMK9y4L+l6rSDZbv+wkOI/CJfnf1YZTyY0q4/McZ4
vrdQW3AslSIQ/QEgWrP5M+rT7SGtPW0Uwd+I5J8AtxJTBxQKlTwlFDGwnw89LJz3/+BCS0oirZA/
cZr7oSiwGipLAed5dfR19bCGHWwlz2eiyHDA30uIPgOmz6tqOQMB95vhb7dVTny8uGHFwlSf4bJS
jhj+gJAvNgHJdpQG1Ha3fV3+lXDMzhfqGepU1b8w6SPqU9OYppVrUnlW+7SScUhSuTCfRL6enMap
u19oH85XIKAlW29jTgykRwVhe1eIoJMc/IWVHnGcRBNV4SP672oiw/Z/0ycwzo/klIvoSUo4OY1T
d7/gbcq5AkgEon/JAo1gbcefTI+46AkRPMWEB4i1dkqi8O+xGElvzym/dsve7Es1KU71Rb64O51Q
M8XaPfhSBkrT4YtAbwF6mzLfM6b3mouVO/6HArS2emKJ+vItUfoWc0DH8NW/qTV61NIx9ctbU7mc
Kud3ToVgsckYBJjQNLswqwfR7e5FqFB5vGHOsBP689TW6MRJCl2WjrkuCnmF1fmF7267e2ztS/GB
2GorH19Ibv4ZvuBH6WiSJgJxSSeNbmhZYdJuoiFylAqe4Y9Ouw4K0VfUoV9EvOTdNA0D0l8bUZj0
I2cQ6Y+gFLz+gBBhUk40aVR/AKic1xED6Kem7e6MD93igH4n7P+26bLhAyr+nzIvPi4COd8HXeAA
ofTpaZhd2Kd7Ruk9pxq5T7ecdn+/7lXt0YmfEdG/Bb7NrHgZoKuKRu37AC1cOKAZa+umHzVMEvJD
FVwCRr6pED/CPcX1zSkdz2X20GuW3GeUXOM2LWmFiEb253mvTz8wl1RuCzr5INBbBD29eMrKw4sa
Vtw60OQDAIqbVnUW1TXfMmbUfocR8A0RvGMi1u5gBgvoNp0x3tjNS+9FDnn+bUEnHyp4i0Cnu894
h+dEk7cONPkAAKpAZ05V8hZ3nXcYgb6hCFh/gAn+bXqv2S+Piqs6xkN0lkmbO+NDhEA35iawf8Ps
wh8ONPkAgKdmF7zfMHvonLykv78Q/daHmP9uGEQoQErymyCTDyVsIMI5RaP2O7K4YcXCgSYfADBq
0fLNRfXNV3nkHQpoo4k4d+K0VDtAs5AmTHt3VbK8571FQf1aohuWGPnfIDrEdDw7EECJ8LNtW5xD
iupb7qGY+QSaFi70i+qb/4RI1yEg/NK0/Y87w2FrNww535Q5b6R7AdgZb8rezohAofSzSGHyELcq
EYz+M+G7VYk/RfzkIdCA9VfnsOSIiDH9oUpKdBOYjbY22IlXSZ2j6mcXnG/qqPxHWRwbvr5pVsEF
pO4xAP3DtP3BQlvVxKlQmhqUfQUWkYdDi+qabzGReOzMng0vvFU0cv9qBX5u2jb7+KWWl/e6EMHK
Tpdp50Kctn1PSzD4on3ei2+NHjVG4Qc390DQ5oCjRXXNF3/q2We3BubnA8bWvhQvrmv+kUKnQmRd
UH58n376XnnJgIt1dTGKBcGduFCgjVmjkerExXQ0AtefpiEeqU7+CNCpAgSmvxJ+qo1miqUr53V+
lRlTTNjqhjsKkgWlTXMKWgL0AQBompP/HDtdJQQ8FrSvbEMBEtH5Qdkn4IriKc0nFjc1p1TL1m8/
Cxf6Y+qbf6zA1WYN47B2t7PXQaPMKgHcSLJ96p8FDuX19SkEuYwRTPJJkFWuI2VF9cuDWDLskTH1
LUt8jZQqsDoI+8wYHnH5koHa8dzIpRzU3r34qyLqlkWqvLTrH6nylojjlEI1GP2B4Z6XM2D9SxZo
BMTBfSkRLmmYVXBmOuds1V06cpOfLPgyoLemy2c2sDY68QSHMMG0XRHxCfhGUX3z1UGsLnZHcX3z
T1XkTyZtik+x3raXmV1aa9IpACiRXQHJchwffVpCbq+esCcE5wYRiwLP57g5x46sW/l2EPZTYVzT
c2/6vkwG5MUg7KvK+a3Ro8b0+/mNGCs+gpl3ov7zrsixVL01NP2HVGx703W9yYAfiP6ier7Wod/6
A8CwtVu+CeinTcX0UYjo3PpZhdeBKO3F8U0x8o5NFp5jk5D/oKqXmrYpAiGHvlZU32w0EUgFApQT
eeepwNhnnBmfWrsh/796vMYdkm98aZMgAzrCackA+tg5U333AjByTYehkFeSoKnDFz8benfdPZtW
rvVzpNoXCWDWEQ8BpN+1CJ6fcwEz+rxq1Suir7gkU+mL4Xc3pgqsdRNSDZifNcWMIR5y+q3/jHvV
IcVlJmPaAQE/rp9VsCAI26kSi5GMOqjwXAEeCTOOTKCtqnQCCMa76ToOzh1T13K/abupUrRsWQcz
jBZP+yIXa6z7gnhedCF1QWC2c6nQgLtoWkJGUm/Q9N5JJfnKMD9eXNEufuSEvetXBLb/31fGLXqh
3VE9QQkbjBsXOf+dSZOG9PVp+gyGCNT46pNPaPci7glUFVz9RV+h49HuO84JAvP6C/R8fQZ91h8A
1r625USQHmg6JoUuqJ9daLxIsD8snEl+0t36dQS0FZktqLL5ex3Rb4vqmn9n3G4fUIBE8S+BeKZs
MvFBa5+eOL3bxz/473dNOQQAYvmMSXuW9EOc+pvQ3eLMIIXRlv4CqDLOGNf03Jsm7ZqguOn5Nxj0
TdN2iXlkXr73lb4+z98a+SoD/To23R0iUEf1jCEV2940adcEeRVdbzgqxvVnYKS/JafP+m9/sv7A
cDgAdOXoZOGF5u32n2WXFHUw0+kw+CWVTbwzadIQFT3NrFV9aVNk/Y/N2kyd904qyW+rKj2zraqs
mQjLGGy0jYav0u3WMAMAAf806dADfwaqu/3wq2zGU0q5OFmh3zXtnwm/GlPXXGfarimK6lY8FsR4
+/5oqYqzTMfBhF9FqryM1d+t9h8jMq+/aN/1r5q/7QBSVBmNQ6RLSL+xMEbG2yQMlLrLCl6A0jVh
xxEGufnJE0x2ERWBgPDtgxa9Yfw0am+0VR91UGtF6c+drfwulG4jRUkgjoSmdzf7igHAJ/qXSX8O
MKz8+viACros4eKSbE7lunXlR+1NMHvsUATvwNuS8VMlOZcvFeB9kzYFVN5WXjY21eu1fsheAI41
GYMC77huMuP1d7qSlwrIqP6qKNdGpKz/9uf4xsevO45T0zRr2N9N2zXF1vzCGoUfaKO4TESVTjFp
j5h+V1zX8oJJmz2hM2Y47RWlJ7dFy56AyGvEdJHp1eudYQYL+7tM7LevgIj01lO+zzgepaU3viUY
fHFSqgvyHTnVtG/HoUuLm1Zl/DyhUYuWb2ZSo31PGCA4mrKmSfWM689Kl1IFMl5/Oh6bSQ3rz6Ck
H+mTpp6nXzMZAyDv+on868zaNMuzF9FWIifwVvOZhJaXu6ro13iKXSLoYk5eZcxeD6yZenRxW7Ts
sra1b/5TmR4GMC0dfncgpGftqjHZjhoQ40fb1Ndy0zbTiYh0ZeF/zHXLY031eLa5DyS2n3oZPXnF
PSZtBknRiP3vBNGA22B/FAWlrKlq6temhOgrzrJE1ugf2ZC8k1TM6i+paxqt2fwZx8GhJv1DnXlN
Mdpm1GYAbBpVcJcvGtrR7HTT6m4tNTrEjfHHoiUvvGfM3k4oQK2VZUe3VpTcRcnkOwBqiLFPUP56
gsB7r+X4J4pRXQDQhPciRQx3DubsTkCaLh9m/khjwFTM7bwWwE8Mmet1muF7J5XkoxPHmpw6QsrX
p7MBz0ChhQv99mjpzxR0szGbkPJ/lZfn7d/U1OOXkD6DIYktepwpvwCgDmWX/jPhJ+r4ZwQY0x/Q
cm1EHlWg9yRAudsK//7gE9oomX+HSZtBsfIcSlbM6/wtgIxerTEFq1SYtEcqxmuYAGDN1M8VOJJ7
RrvK9wk4EhT8TMpU8EnPwU7HuBkAmmIjNkLxplFn0AlV16wPZuSvZZcQqbHTRwzutQVwZCtNNNn7
Qwkb4lKQNb++d+A7ibsEYvAoOw8pcDt63cL0Ot2JDHP6C7Ahwsms0z/iJ+8SNddKgBlDPM9NaQtZ
DRefsuit2bD6sQOP9I7d5USMEr5gzBbklaKGlc+bsgcAa6eWHLwmWvYrJCPvqeIWgI80aX8giMrr
DKrd+d//kxopnjHp0AGzeLlGi+MsPeP7ZHApWN/q9QqlSeb8ASy4p7df/ZnI2NqX4kx8n0mbqs7R
vV7E6P2aPuAQ7knpV3+GQdMQdyBG9Qf1rm0spuyncF1fYNY7TdoLmqdmDW0XYEnYcaQDUplozBbR
gybsaHm521pV9pX2ytI68flVBi5k5mDGMfQREQggDyqhesyxKw8urm/+9c7X/KcohOgpQM8wGQCR
/1XYznlp4aSY5sep4yBTU9hZ9M3er5Iyk1PffQehdQEcML7eB6bvmDJHQFkKF5XCYGNu9TV79Xdw
HwTG9If0rv9TOR0HOsrm+q+ovFg/e1gAXXaDxSHnYVU1uhWVabw/fUIREtyn01E9QUQDStrap5WM
g8dntaLjHFbeSymTul5Iq4JviUTwu1G1K7eflOrmQP+HCYiQPN3H7tu9onC+clJMz0vn8KTdlbjb
cSSIjf0Bhdxej2aL4jBjHgXxMSO3PGXIWtrp2hZpzM3zukxtSYnqYb1sX6kEAAAgAElEQVRepDjc
hC8AECCes9HLWv2dPL8xsYW7jG1JOehVfxU6wuQtU0FZOXXW8bnWY+PT4jMK13MPNZXri0DgdPV5
mrEC1F5ZNgWK7/uenMqAyyYL8AaIQpcS6MaikdsepIWrUupf82H05cnCV6BiePSvFm5xO08ya9Oy
a9jY8qAI4sd6eT2e8X99+oG5IDbXeprxTKpv2kzkU88+u1VZlxszqHKQlpR0WxmujyNXhIzpT4Jn
aCayVn86GlsZMKa/KB2kLT0PZCQylwACgKOU9knDJqidk/emDwnsNEdG4JsbL0KM18fWvhRP9fr2
Y44Z2lpVdl57ZdlLIDwJxtdMdyvtLx/Uvv2vOHr4mPqW44rrm//cl/v4hwlILEZCxI+bDtAn+rpp
m5ZPQkSTTdlyWF6NxajHkxDDtw77FMPg7z/SFcZshQQTGXsNzOysGRrZq7vHu4bkfooNLlmSwdhD
Qw3qDzjbOvK61R8AVMjs5NtIotmovXRBpA6oz7/oswkhNXZ8lYCUttnerygb3xYt+1/NS75HihtB
va/KpQ3Fy6p0nrMtb6/i+uYfjK1tebk/Zj6WRQnpY6R0ppkIt8OQ6dXXxvdccknB4M6QQyQWU14q
cWPHYVX5b71dw+zuIwYLEEjRrzdwJqFKL8OgJq7r7Qfs+nSaI/4+RvM/yn79ifRlk7PqXa97/QEA
rPsZ+xso3qy7dOQmM8bSD4FWKXBy2HEEhYL2IkOfbSL9d7d+Skoi7cOdLwv0fCYct8N7JiBAkoju
I/g3FtWvXEYGAvtYAqKJrbUUydsGsMEeGOyKpz+Euf4Ulp1YGtlyJIAicxZ7/yUppAb9AWA22kwq
DJTlDRJzSYEKd6sxKRepwRuTiGa//qJvwFwZFIi71x8AFDTOXAkUjHejTicK+memfFEGgQOMMvXq
VHn9zv+2tnLSXj55Z7cC32PouMyp7Ng+GoOJFrDobcVNK4yWaXzsdTbFijtBjvFTKwo6b/L8jYH2
m9+dIcKJJu2pg16XghUYZdIn2O/2V0G24Pu+0anSPWksUKP6RySZ9fq7jmtU/940FoOfAYeQ7XNV
sv790xMCMff9RboV2F5UurZyYmVbtOw+TxNvEXAFA+OM+RkopLVC+uUxWnBAccOKecVNzYZrRHda
AQEACN0N0hlm3WhhrkbOA1Bj1q4FAKDeKYBjxJQP3VLcVdDrFgxAhSZ/8WzkTZ/4VZBtuJJYB8dk
bZgWdvcIQQtNbsFAkPX6g7etg2+uozP1oD9UyamJG+u3IIpURx9kJEq0nnTwroAokG/q00ZKw9qq
Jl7QKvp9Jj0YAJgzY81DCRvg6+3kOjcXL1ke+KrcJ161eEMWQbDBtCP19YdTr9cC03Z3dyqu3vxZ
hWOs4x0pLUtlBDiR5pjyKSJ+GOOoTVNUdOhWk/Z61FhhTn/Ap+OR9fqjHUb170njGVf2fEKmrzBT
yqciMhLPz/jhhQOBocb+3gq9GKq/ZsLBpmwOFIG2QHGmP0T2HtPY8j/pSD6AXSQgTTHaJg7Md+Nj
FHmJzsuM293NISKjo8CJkNJRQBI1s+QCAMxZM3ukJ2jhQl8MLgsRqPvlFDa05AUAkj2zX3qCZsIX
k5XRu1oh/oBNBWYTEFFNmrSXbtjN7vh7Rdnc5y1jkG2A3MHAxLH1LWXFDc237/nIyrT27Nrlug/5
YnCw03/woReXz99krnfEbk55TF0hNdf9EQD4k/36d4USTN5wXDW6nxAOWl7umjyarNRDXw41rL8O
Av0b4Zo8mgztXn8nF0bnnzCR4Wmg6UW87I6/N3wY/byFzT8I+HECzt7F9Su/M7q+ObTj37tMQBov
H7YahAbTzhxwjiPOL03b3V1xcjq/zOAeexX0BR/yXuOl+SkNSFLtfZsmVRig9vLxWb89tzm3y+gM
BupJ456Skz7CDEITsl5/dMHsDIweNF50gdmmbSJZvj3tOt3XywwCXDZ3vwsDEYgS/qJEXyya0vyZ
ovrmn+9dv2Jd2HF1X/mi9LMgHCpwQuXcuO2OOlBUSZV+bNKkC3oURCktYTNoo0nfklNg9lhvCCQ1
UWzSnpJ0q7Ea1n9bIi/r9U9Qjln9tQeNidQHNpvyxYTRpmyFAamam4mTgaiq0c9b2lC0A1Qj5B0w
pq75S2PqViymWOZsuXabgDTMyn/CF7wUjFv/lqk/7TB6s9jdqLwmXg3gKJM2SWhhqtcKq9FTE46a
6zQYFr7nGn0NAnT7C4WFjOrvkpf1+rMrRl8Dg3r8hcg9/H36ihCyW3/C3mGHECSq5v7WaUHoaVI9
Y1Puhk8V16+YvWfDC71ONw+D7ldAiJQZ1wbilXhsIkfviMU0M84eZRmxmLIvOt+kTYK8P+KzBanP
olB636R/KD5r1F4IEInRqnZX0K3GSmJUf2XKev1Vyaj+wtqjxoSeH+8LpGJs1kgoqJptS59pUPef
xYxBECfSmxV8RHHjiilFDS13Z/rpwh4TgNEHFfwZhFXBOObpT7nxHwZhe7CzNCf+Xw7o8yZtKvie
hTMp5ZGW7PpvmvQPgbGjxGEhoCNM2vPcnDe7e8z1vG4f6w9M2a8/Q4zqH/GSb/b0uBL1OjE6dXjf
bG7WSMigOSUBQMDbYcfQHQp5BdAfOHm8Z1Fdy3lj6pcHtHNhnh4TkIUzySfQnKCcq8o1lXO3GJvi
ujtQHts8GorrTNsl0lv7cv3oSStbATHWd0FJJpmyFRqqR5szRp1jap9p7/bh59AqYq7vhaqf9for
kTH9RdCJqehefwAQ/YcpfwCQC9folmraUCVfUBp2GEFCREb/1gNFIJ6o3EuM8uL6lYcV17f876hF
y43VJKWLXrdA6i/Lf5igzwXjnSM+yyNV87cdEIj9wYYqcY5zI2C2YE0JTfWzhr7Sl+dQDCIgY6tj
Aj7ivfKSrC3EW1s5aS+zjYX05Z6GPVEMwmxudVLEOUIbs7cQUuuH7AWDWzDMeJl6nz5m9pemoNKo
vTQRnd9xEDPGhB1HkHgeB7IT0FcE8m8CrnBc7DO2YeXXipY0P2liKFxY9F6DQaSqzn8HFYCjKBbx
nphS05H1VfhBU1Gz5XtQ023yARK9sX/PZGM3YAbIZTY60yad+PCNnuxSlV7b4RPEnP4MSkoka/VP
wjOqP1Hv+qsjL5r0qT6y8nSgKk0LO4agGVv+3NsiEtoKAwnqVOkrY/yh+xXVN19dtHhl5tekpEBK
RaANc/JXEPD7AOM4iJUeta3au6dq7ubJAv835i3TP8QrfLA/z3TI8MoY4TSj9tKIQo3GTky9aivK
RvVXpazVn2D2vSPSu7ZNlw77B6SXbZq+4ODg6LzOzxmzlyZE6ZSwYwgaikEccK9Twk0igk0g/JJE
Dy5qbK4e07DiQWpqMtoAL2xSPoXiJPSyIGbEfGgfmJjoij9ok5BPUnFVx/gk8cMO2Nj8jw8hXNsU
o369qT0fz5gMRQTV71VO2NekzXTQVn3UQUw4zqRN8rGst2vUIaP6A1qt9XlZp/+22tyDoGb1F4d7
1R9ECtber+sDCpxp0l7QTJ275VNKYlT7TEUYz6bDj694AaCzEOnaq7iu+UdFjS2r0+E3DFJOQGqv
HNoGB4FtxQAAE6r9RGfdtNimQd3Upi9EazoOJdY6BzCuicJ/J7cw/w/9ff7YxuZXADE2opkZHGH3
B6bspQ0Ro58Lhbw7urHltd6uy6lIvCI+mdMfYE8k6/R32az+EH03t6KrV/0BAISURhekig98Z3ps
ndmOrgHik/89BxkyyjVgmFEfmHFBF6B/EJEvjG1oLimuX3Hb2NqXsntAYQr06Y3TcFnBXVB5PKhg
AEBBX0g6zpPV18b3DNJPNlAxP16iSk+CeGwQ9pmcyxddSP0+J/5B8dMTBkOCKp37bnTiKJM2g6R9
Wsk4QL5r0iaBFqdSWEYEdRzfqP6ieq7WIWv01ycwzhcY1l8Xp1CACgAQcheZ9O0Aw7pycr9v0mZQ
TL1eCxR0XthxpIvRe2x5FiCjU3+VsEFJf+Kp7F1c3/JfYxtXLs/motK+0rfMlUgB92wfMNqF8RMw
DvOTuqzqqs7DA/WTwVTM65xGgiYYPvGyA1/w0sgDC+4aqB2F87CJeD5isTCHNLCj36YRj2MA55m0
ScR9qMkxqz8zCj2NZI3+vuvEmGFUfxBS1r/psiFv+tCU5ieljOKSbFgF9pLx8xDQ/SkToYWrEqK+
0R/gpJLH5P9pz6aVa03aDQIFyPTQ0D4vnTXMyf83KwW/T0nYT0iWV87r/HbgvjIJVaqc2/EDFXkM
0MAGPDnQH/Wl8Vh3bPHznzD9q0B8uWBNVUnGJ5/t1RNLFfieSZsi2DR6RHxJqtc7TuIJEZjVn3BB
15KcjNc/URsp9YXN6g9scjb4KesPAC7Rn03GAGCPZMSda9imUaI1m0dBMTvsONINM99v2OIQ9dwa
szaDoS1a9vW1laVLTNbp9WvvrnFOwcNC9FtTQXQL8xAAt1fO7fz9STHND9xfyJwU0/xoTccdIPoN
MztB+SHIHxouH2pk2vH+TU3bBLjXhK0dMLND4Nu1pCRjR3y/Pv3AXPX1djb8i4AYf6aFq1KevEkV
2OawmNUfcJj0dm1BxuqvjyOXHP92ZrP6O5A/08y+TbpV4T+JyICT+Z2snldR05GxxZ2q/DMAe4Qd
R7rpiruPGD+Oy/ivtsqyY43aNEx7dOJnCHSTEkVdirzcHi09x8RqSP+LhxL5FwNYPtAAUoLwnbgT
X15RsyU7OwWmQNX8+ITNHG9W8LeC9COCdX4S/2PSJgF96qKakk1Fydo9nHmm7ZpieGLEz0Hm2087
/dBSQcb1B1DibczJWP39nMjPoY5x/QXcZy0b5uT/22F61HQspHpXtGZzxtXjRGviJwL4dthxhMGn
nn12K7Fzt3HDitvbjzlmqHG7Btgel//Af1bktVBBN5tYDel3AtIUo21QPhVq7hREjzAOI997tnxe
x03ZPDNhZ6b/WnOjNfErxPOXOw4ODdofOXp2U2yY0f3G4voVz20/OmYWhV7cXll6umm7A6WtqvRM
AOebtivQllH1zS19fZ4b9Z4DfOP6A3qxV5+TcfonlkTO1AD0B9ASiSb7rD8AqODXpoMBeG8V/nPJ
As2YlajKuVv39VTvDDuOcKF+Nm7sAcYBkpu42XSNxUDR8nJX8hJ/VvD4TzxmYDVkQMenGubk/xvA
qSKSnol7zMSgcx11/15Z0/nNbJ+mWzm/c2pXR/wFVb0SzGm4yeitjbOGPmDaKgHqEn5u2i4AiNId
rdHS6iBs94f2qokniK+3BGGbia7vTwU8EZTgBqK/r3pHss7NGP29Jc4JSghEf1K6PtXTLzvTMKew
ERpAEkiI7rG249ZMuNdVXbN+ONh/JIiWANnE9mFvmvrk8BQhwhltVaU/Nm23v2gMvNaJ307A9B6u
+nA15P3yL+zXVx8DflM3zBn2DBN9EyJpOzrkKIqh+MPSnPhLlXM7T59xrwZWLxEEVfPjE6LzOh+F
YDGAQ9Lk9lU3pzCw6cOjN8q9AIwPbCJGDkH/0lo1MfR2z+0VpSeLrw8EUZ+jwOoir6DfyaGzR+Je
8sW4/gzkiNBfkkvc0PX3GnJP9okfYMD85111teMm+p+cEykQudpgRB+i4G8tjXQuCPM+d8y17UMl
mfsYFBlfnJwOlCiQwlFSuq61amKg2/CpoCUlkbVPld2pwDdSup4o6jjyt9bKief2ZTXESFbdMGfo
QhBfZMJWn1CMB+H/1r0ef7VyXue3M2mp8hOoUtXczZOj8zoeEtHnFTghbb4FG4T9k2svpsAa29DK
lUkFYsFY5zxV/9EPtj7SjgLUGi37vg96kBjmu9ECYGhsIG2WqRRJOE7MYEgfwow8UXo0sSQSjv4K
StRFvu+LPMgIRn8ijlEFBtTmumH2kIeMH8n9EDqr/fXOhWF0ip76045i1xtSB9Zj0u07Uymua64H
zHaC3oGq3tFeVWb0dFdfWF9VMrx9D34k1eTjP2ghkd7UFi2rS3U1xNiyXsOcwl8CGlbR2kEAbi9c
F3+3vKbzF1Xz4xOgmhF7adNim0ZW1nScVzlv80ohfkpBX0qnfx8iDMxsumz4G0H7Kh65391B1IIA
AINdKN3WGi1b8N5JJWk7EdVWPr6wvaLsdgL+l9nc5+Vj+GgePaVlwCdZnPWJu4OpBQGY4RLhNq/O
WaCPIG36ayMKk/WR7fobvF/tRLPzdGLgJ4mINCJmC7w/CoNO8bbFn6u6uiNdq6aonBf/vBeh5Q4w
MV0+swECVFl/EoRtBkgVt7RHJ16n5eVuED66o6267MguHysA9HvFk4DKVFdDzH5Jq1K0Jn6tAhcb
tdsfBC+Tgz+Sh0WTpWBVLEaSLtdTf9pRnMzhEwnyJR/6xUBmuKQK4cyGWYW3p8tdW3TiFECXBuqE
6A0WnDO6YYWRo8Td0Vo1cRqpfzPA+wXpR0FHj6lfYWTORLLOnQJQoPqTyhvKdE4k6gWqf3KJO01J
b6aA9Qf06EiVZ2zOR+W8+EJAv2rK3ieRbSC+fNOogl+tPIeSQXgoWaCR4evi/wNfrkpPfdp2GmYX
9uk7qfSeU41s/becdn+/vgvbqsruhcL4hPKP8AyBvlNUvyK10QD95PXpB+bukRjxEx+4nGHu+L0C
DeI73x3X9Nybu3rc/CqBKlXMj/+MFOnfkumO7RMrG8mhBvJlqecXvt7fAWw7E4spL3M2f9pjnkDg
yb7ocQ4jIyZaKnBR4+zCX6Tbb1u09FaAjLbH3hUEelhAV2wvCjNHW1XpBFFczaDAt8kUtGBM/Ypz
Tdr0ap1blTlw/QF9WMBX5FYljOqfWBKZoERXMzRw/UmwwJ2aNKp/9bXxPROevuoAQc90eVVJ5xyX
KHzI2A8sVaqYv2U6Qa+D4hMnH4Im2xKQtZWT9vIo8SqDAztCq4IEOfhFruNeN3zxs0a7kOuMGc7a
df+aqURXA/i0Sdv/gTpVcXFxw4oFOxfZB7NNoUrR+VsuV9UrA7E/YMSDz2+Qo6tFaTWI/gHIRgJ3
sPodvssdlPQ6Fewycy6YckV0GKuOBmE0QHsJ4QBVOYDhHBJkx9L+Q7GG2QWh6L+h/Mg9uiiyihnp
muezWAm3bI5seOygRW/060TWv8rL8wqczhNJ6BxlVJkOcFco5N0I4bCRdSs3GbXbiD08310FUFr0
F9BiR3GLk0w8RsejX/prI/J8P+dEgZ5DSI/+EH3XJe8wqoZR/QEgWhP/rqoG0Z9lV7wK1RuJ9e76
WcPW9cfA1Ou1IJmIn0rQCwEqMR1gqmRbAgIArVVl55HC/NHcT0CdULkdDv2+aEnziwOZGdNePWFP
Uefr5NO5YBxgMspd4SteGDtqyxd2brIYaJ1EdF7nfyvwyyB9WD4JEf20flbBVWHGsKa6LArBEtOd
QntCRDazw4sVaGSfVyQLvVf3fGTlll1d+95JJfmRbc6hIjqRgEqBTA3yV8wnYgXUIa0sqmtpCsJ+
staNCmiJ6U6hPSHAZgYWq6IRDlZE4slX6STsUn99BPnJ3MihYEwkaKUoTWVC+vQXKJNWRqq9pkAc
qFJlTecDAH05EPu7RDwQLwWwRKHPJsl/6enL9tiwqysn3aBDhmzdcoiqfIEI1T4w1QGF3m06GxMQ
Bag9WrYIA6ib6DNEb0BkEYiWkehfR2/Wf9LKlbvcjlOA1pcftZfP/uFKNIl8rRKHvpC2e7MgTtCS
osaW1Ts/FHgAFTUdXyFf7/qgrbolYIhodv2sgoyYLdAWnTgP0FnhRiGtUG4n3n4CSEULoCgGozjM
qBS4akx980+D9JGsywldfxW0kuO3Q5ztJ7DYL1B1ignh6g/QVZGqRKD6R2s2j1LFSoCNzc7oBxvh
Y4040sFg8QVDXJYiBY8LMaZuycYEBADaysvGwpEXgGAml/eGCASMVlasI6a4eiLqUC6JjABjnOmB
mX2BoKcX1bfcs+vH0kD53HipQ/5fMvVNPxjwIeKS8/36WQULwo5lBzpjhtO+/s3HkM5fBlmAQB8b
M6XlZIoh0MJovRdOYmTOYwy1+n8EAT2W83QicP0BoGJ+vEQ9fxkz5wbtazCQrQkIALRVlh0rJPUM
TuvJlUyGoNcV1bdc0t3jaemu1zSnoCUBp0RBT6fD3+6HbHPJOTWTkg8AoIUL/YifPI0gq8KOJXPQ
l3JIv56OLz+aCT/HSZwG8a3+O/D9l3I0kRb9AaDxsoKVxBR6YylL8BQ3NC91iL8fdhyZA903ekrL
ZT1dkbb2vk/NLnh/8+j8SkgwLbt3X+RdZWdy/ayCh8KOZFeMaPrrRnZ4ukLeDTuWsFHB26yR400X
nfYEVWCjq7nTIWr1B9523dzjgyg67YnG2UPvBWVAawJL4BTVNf8OimvCjiN8tDHu53+zt0Q/rfMF
Vp5DyYbLC39MRCf5hLZ0+h6MKOhpApc2XlawMuxYemJUbfM7DCcKpGlwYQYiwPukfnR0w7P/Trdv
mrb1HZ+dqPi0G+tP74vDUYpuTbv+ANAwq/BnqpoRtVmWYClqaJ5FpDeHHUeIPEPbcr+0f1PTtt4u
DGXAUf2sgkdzu/RwQP8Shv+sR0QJmL95dH5l/ezC1rDDSYWi+hWvkVC5CN4JO5Z0o4K3HVB5cdPz
gXej7Y68qq7XNELlit1Qf+BtBZXnVXSFpj8ANM4unGOTkMEPATp6csv5pLgp7FjSjqAJ/pZpRcuW
daRyeWgTFmuvHNrWMKvwy6R6ml0NSR2CvE/M0+pnF84KqgtiUBQ1tqzOcWQyVF8NO5Z0QZBVrvIx
QXcyTIW8yq7VEXUnA7uP/hB/VcRxj8mr6gpdfxBp45yhs0HocV/ckv1QDDK6ofn83Wo7RvFAXAum
Fzet6kz1KeGOeCbS+jlD/5yX8A+B6u/SOVE3G1HFbX7SP7R+duGSsGPpLyPrVr4dEe9oAFn7GlJG
9AnOcY8e1bQ8Y+ovqHrr267jHa0y+PUX0BOuJ0dTxdaM0R8AGmYVXkPAN31IoverMxtf9Z9QeTHs
ODIRArS4ofkyVTpPRPyw4wkSFb2haNR+M1PZdvko4SYgH7A4Nnx9w5yhZ4OdUgDBzhHJTlazoLpx
TuFZTbERG8MOZqCMaPrrxiK/4HgA88OOJQgEUAWuLhq9/4mjFi3fHHY8O0MV2BiJJI8HaHDqL1CA
rs5ZnziRjkfG6Q8A9bML7yJ1j/Mh74UdS79RWRNxItUgejTsUDKZMQ0rbnZcjkIG40q/bFXgm2Ma
W/6HFi7sc5KVEQnIDhpmFzzfMKugHMpfgeDlsOMJGxFsUuCiTaMLDq+7vLAu7HhMQk1NXnF98ywA
0wV4P+x4TCGQfxN02pj65iv684FMF1QBL1KVmAXodAENGv0h+m9mnRapSlxBM5Gx+gNA05z853IT
NEFVngg7lj6jsoaYonWX5f0z7FCygaIlzU9SjhwJ0tqwYzGG4m++cNmY+ua7+msioxIQAACRNszJ
f/BYv+AIhX4NwO6zX/0BIohDcY3jyKcbZxf+IttqPfpCcX3zEx7ocAL6/SbOGAR35nUNOXxMfUvW
bG9EqrwncpA4XAeB/grc6Q7xDo9UeVmjf+2VQ9uO84aeANULRBAPO54UWc1OzjH1s4a+EnYg2UTR
4pXvF01uma7A+QClXCeRaYiIT9DrNuVuKBvX2DygHkNpmxPRX2Ix5adythzvi17EhIqw4wmYjQAW
uAm9ofbKoYNwua5n1lSXRUnk1wQ+NOxY+oTib8R6YVBzXdJFstaNAvg1mLJLf/h/g/KFgc11SRNT
r966v0f+r0E4MexYukOgD7pO8jt1l478sJdK5byOuQDNNmE/mzuh9oV1U8s+lfTkZ0w8M51+DfAM
SH9QXNfyggljGZ+AfJSq+fEJnsjZCjojDaOu04bv4zWH9Tfibb2jKVactZmxCbS83F3rxs8UlcsJ
vHfY8fSECt4mpquKRu57RyZvt/QFbYSb9CNnkujlYMps/YG3AVwVWZ+8I9O3W/pCxbz4CUR6LRTj
w45lByLYREwXNc7Kvx1EH/vSN5aAiCQbLh+W05enZGsCsoO2qpLJ8J35YJ0chv+UIXoD0NlFdc0L
BzKF9xNmTRlKJ1Ov1wI/Gf+qip4hqlFmdsKOqc8IOsD6Z6je3jB76LM7f6h3d16ffmDusK6R31H4
FzHxQWHH81EUWM2En48eseXOncdLDxb0ceQmcyPfIdWLAMoo/aG6WkE/j2xI3kkzMSj1n3GvOutf
j5/u+bjMcRDeipSIgviOJNHsp2YX7LJWyFQC4kO3PDl7aEFfnpPtCQiwfVptW1VZlBQ/AVAdVhy7
QiGvkPL1RVJwFzU1eabtZ2UC8lHKY5tHc45ziqh/CgvKM3rqrqAdrA8r8YN5hfn1iy6krrBDynQ0
Bm5/svSLYD1LgJPCGvQkQJKBvwC4tWhKc226ZomEjcbA/rHOF1XoLBE6iRnh6C9IMutfANzqPu3t
Nvrv2IJW8c+DYjqY03LPFhGfHb5XPZ3XeMXQHvf5K+d2zgfh0oE7xYaGywtH9uUpgyEB+ShrqkoO
Zzhni+o3GNgjjBgE4jmgRwW4sXhKS32Qn7WMEN0U5THN49z4sfAwlViPUdESMEdCDGktFM8poYGB
+inJgpdjMdotbpxB8F55yeiIy6eo4lQIysEIdsKooEsZDQS6PwE8tHf9inWB+stwtBGjk17kFCU6
FdByRrD6C9AFoQZivT+C5ENUhd1a/6prtu6j4p/mqX7NAX0+GC/0DyL8wXfo902X5KfUP6WipvPn
pLhowK4VbzbMKdx/wHYGAf8qL88rpM6pYJqhItPBPCpIfwIkHcGTQnS/5CbvH7fohfYg/e1gUCUg
OzPpBh2Sv62jVJWOhOJwEH3OBw4xXz8iHsCvC/TvpHiVgZccdVfUzsl7026tBMN7J5XkO3F3MkGm
EHSST1Qy0F8MAmx0BC1KeE5Jlya2RJ7+1LPPbjUV82BCH0G+l4dHmLAAAAiMSURBVO9OBniKQiep
jxLmAeov2EiMFiJ6DipL3XzvaToaVv9dUH1tfE/f12lQHAvgGIgc2J/VERHEmfAcMTUI62ONlxS8
1Nd7VnRexwIFnd1X3zvjC1568vLCIwZqZ7ChMfDaZRM/D9HjFJikgjJi7DMQmyLYxMALcLAcok9S
V+7TqbZPN8mgTkC6Y/L8jSNyJLI/lPZV0iImjBboKFIdBtVcZc5R1RwG+xBNKEkSRNsItBGEjQTa
IJB2Jn4nIXh37EH5bQtn0qApgstGFKC11RPGkR85WKD7EnQfBUYpaBSRDBFycgGA1e9S5a0EXUdE
a1XxDoPe0oj/6ujFK9eYLLDanVAFYUn+OM9JHKygfQm6D4FGCTCKVIeI8nb9SbqUaCsD61R1rRK9
Q9C33KT3KqZhDZHVvz+Ux9oKKadwPFQ+zUT7+dAiR2WkCueB/7+9+42tq6zjAP79Pefe2+3+KbRb
SxQ3wAyDaIZCxD841q2VOTIwgUHUvUDNZMkwiJJp0hZzkrWlpm+kIAmLgBoCGl4RmDXVttdNCJrM
yJ+AQdkQAovbOmh77+3ae87z88UwwcS6rvc599yzfj+vb77Pr29uvnnuOb9qBjABoCUVnDSKd1TN
YWuCV9vWFf5e63fX5v7yk4Bur/VvUEFxojt/rr/p6MTk1s8261x4mYW5SKEXicFqKFapIisiGSD0
rKJq1MxagykjOA7oO6LeEU+C11t+f+itRviuW5YFhIiI3NjUXz4ocPAWh8Xj4/fkdzgYiRKi8RaR
ERFRYlhra/o54APOnY28tCgsIEREtCQ3+Jr1oGtcZKnomy5yKDlYQIiIaEkqTZVPOHs12Jh/OMmh
xGABISKipbH2aldRBiELyDLDAkJEREuiYjY6CbJ2tnVd4XUnWZQYsWw1JCKi027xNXMiXd4O1dUT
vYXhuOdZrKse0jROlN2sDjfmRa4yWH5YQIiIYtA1OLvWhsHtx6T8bU/RHgoqHf7040W/+UTcsy1G
y7HyRlvj8rn/EMghFzmULCwgRET1oipdfeVOa/SOali90YMx3vvroDxIVlOyB8APY51xkSxwm8O0
g+6yKCm4iIyIKGId/rvne+n0bUGI3Z6Hjy30OWvtXAbpj4/es/JIPec7W539pQsC2Dc9mIyLvJSa
taO92bdcZFFy8AaEiCgimwZLV0igd4SCHQpkPe//f94Y0xRo9QGobmvk/yOlwPdclQ8Ar7J8LE8s
IEREDm0d1qZTM+WbxcpuhHoNRHCG3vHfxFy/+d7yN8aBR6OasRab+yoXwgZ3wrh5iVIFI06CKHFY
QIiIHOganF0bBsGuSqm80wPaYZZ+gWFD3N85MPOnse7CKw5HdEJE71MxK53lWX3KVRYlC/eAEBHV
qPPe0perYfWIiHR7ivZa84xBTq15aos/1epiPlc6+0o7FHqzqzyBPXptkP+jqzxKFhYQIqIaeanc
QcC85zRUdN2cZ57p8I/lneYuUWd/aX0gus9lpsL8yvfFusyk5GABISKq0egeKadE7nOda4x83qSz
+7f6k82us8/GdXtnL1HY/R4k6zLXinVaaChZWECIiBwI5+eHAbi9BTnt2vl06g8dP658JILsM+oc
mLk8MNUDgHF6vlVMFLub/+Yyk5KFBYSIyIGi3/IeBP1RZCu8T2loD3XtLXVFkb+QTQMzN2koz7su
HwBgRIZcZ1KycBEZEZEjW4e1aW6m/BKAS6M6QyAPhtX5nqLfEsVtCwBgw8BMW8rqkIhxuO30A9S+
MN5T+HQj7zqh6LGAEBE51Nlf+pICoxEfcwKK/lyQ2/e0LxVXoVv8qdYgk/pOoHq3B0T23IlCtk30
5PZHlU/JwAJCRORYZ3/pYQW+FfU51mLSM3gEwGNj3bmXlnKj0OHrCq+p3GFD+1VR3ArjbsfHAg6M
d+c6ePtBLCBERI51DZ48zwaZv0Jwcd0OVbwBYAKQPwP2FSD1TxvMTLZd3jZ7+F2Y9qMnV1ZXZM8P
Av2wiP2oAT5pBZ+xql9w/XbLQqy1oWfMlWM9+RfrcR41NhYQIqIIdPRVPmckOAgYbpx+nwBDYz35
H8Q9BzUGvgVDRBSBYm/2eUC+H/ccDcPi5bCa+1HcY1DjYAEhIorIeHf+AUB/FvcccQuhFWv0a0Vf
TsU9CzUOFhAioqiI6NTq/G5V+9u4R4lTCrKr2FN4Oe45qLGwgBARRejQLqmmmwrbYeXZuGeJhWrf
WE/+sbjHoMbDAkJEFLHRPVJuCk9dD+hzcc9STwI8Mt6T53Mf9D+xgBAR1cGIv2raVme3WMXv4p6l
HgT2l62X5m7nvg9aCAsIEVGdFP32UluQ2wbg53HPEiUr+MmGauGbT94qYdyzUOPiHhAionpTlU0D
5bvU2iFjjBf3OK6cXjQm3x3rzj/Imw86ExYQIqKYbBqYvgaqTwi8NXHPUisL+7ZR+fp4b+FA3LNQ
MvAnGCKimEx0Nz+rVbte1f4i7llqoYJfe4IrWD7obPAGhIioAXTtLXVZxf3wcFncsyxWqHrYg7lr
vDf3dNyzUPKwgBARNYirHtL0ecdLu6xKrzG4IO55FmRxXASDmebcT0fulLm4x6FkYgEhImow1w1p
Lpwv77QI726o50MUb6hgOJ3J7RvdI+W4x6FkYwEhImpQHb6mJFX6CqA7RbEFxtT9OzuEnffgPSOC
R1vXZUf4ai25wgJCRJQAG/rLH8rA3qSKG63qRmNMU1RnhYJjXohRCH7TFMztH/FXTUd1Fi1fLCBE
RAlzg6/ZWa90tfXMF63aKw3MemvDi5eyU8Ra/AvAa/DkBQP9i4b2uYnewmvc40FRYwEhIjoH3OJr
ZtKbWgPxLlSgTcS0QO0KgWQUsCJaVZGKWp32FJMh9KiGp94u+u2luGcnIiIiIiIiIiIiIiIiIiIi
IiIiIiIiWpR/A8/l+xzmfz1cAAAAAElFTkSuQmCC

Mon code pour la lire :



if let imageData = NSData(base64Encoded: LigneDiscussion["Image"] as! String, options: NSData.Base64DecodingOptions(rawValue: 0)){
cell.imageViewGroupe.image = UIImage(data: imageData as Data)
}
else{
//print(LigneDiscussion["Image"] as! String)
}

Une idée de là  où ça peut foirer ? :/


Mots clés:

Réponses

  • LexxisLexxis Membre
    novembre 2017 modifié #2

    Les caractères '\n' ou '\a' à  supprimer dans la chaine ?


    ou mieux que cela utiliser .ignoreUnknownCharacters comme options lors de la conversion.


  • LeChatNoirLeChatNoir Membre, Modérateur

    ca me parle cette histoire. J'avais eu des pb avec le + par exemple... Mais je n'arrive plus à  remettre la main sur ce que j'avais fait :(


  • Joanna CarterJoanna Carter Membre, Modérateur

    Pourquoi utiliser base64 ? Avec l'image comme JPEG, c'est comme :



    let image = UIImage(...)

    let data = UIImageJPEGRepresentation(image, 0.0)

    let recoveredImage = UIImage(data: data)
Connectez-vous ou Inscrivez-vous pour répondre.